Tag Archives: torsionally flexible shaft coupling

China best Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane

Product Description

Torsionally rigid high torque CHINAMFG customized single elastic spacer stainless steel flexible drum disc shaft gear coupling for crane

 

Metal flex couplings are disc type couplings in which several flexible metallic elements are alternately attached with bolts to opposite flanges. As polymeric elastomer is replaced by metal disc, Metal Flex coupling provides excellent temperature capability without sacrificing angular and axial misalignment. The coupling provides low axial and bending stiffness while possessing high torsional rigidity. The stretched shim pack design of CHINAMFG Metal Flex couplings provides zero backlash. CHINAMFG Metal Flex couplings are available up to 13367 Nm torque with single shim pack (UMK) and double shim pack (UMS) series.

FEATURES

1.Power to weight ratio high

2.Accommodates angular and axial misalignments

3.High temperature application

4.Visual inspection is possible without dismantling equipments

5.Low axial stiffness with high torsional rigidity

6.High-speed capacity

7.Range up to 12000 Nm

8.Added advantage of stretch fitted shim pack

Material Available

Stainless Steel:SS201,SS301, SS303, SS304, SS316, SS416 etc.
35CrMo 40CrMo42 CrMo
Steel:mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#
Aluminum:AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.
Iron:A36, 45#, 1213, 12L14, 1215 etc.
Plastic:ABS, PC, PE, POM, Delrin, Nylon, , PP,PEI, Peek
or as customer required .

CNC Turning

φ0.5 – φ300 * 750 mm,+/-0.005 mm

CNC Milling

510 * 1571 * 500 mm(max),+/-0.001 mm-+/-0.005 mm

Surface Finish

Aluminum:Clear Anodized,Color Anodized,Sandblast Anodized,Chemical Film,Brushing,Polishing,Chroming.
Stainless Steel:Polishing,Passivating,Sandblasting,Laser engraving.
Steel:Zinc plating,Oxide black,Nickel plating,Chrome plating,Carburized,
Heat treatment,Powder Coated.
Plastic:Painting,Chrome plating,polishing,Sandblast,Laser engraving.

Drawing Format

IGS,STP,X_T ,DXF,DWG , Pro/E, PDF

Test Equipment

Measurement instrument, Projector, CMM, Altimeter, Micrometer, Thread Gages, Calipers, Pin Gauge etc.

 

 

Production workshop:
 

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China best Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane
China best Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane

spacer coupling

How Do Spacer Couplings Compare to Other Types of Couplings in Terms of Performance?

Spacer couplings offer distinct advantages and disadvantages compared to other types of couplings, making them suitable for specific applications:

1. Misalignment Tolerance: Spacer couplings have limited flexibility and can handle only minor misalignment between shafts. In contrast, flexible couplings like elastomeric and gear couplings can accommodate higher levels of misalignment due to their elastic properties.

2. Torque Transmission: Spacer couplings provide excellent torque transmission capabilities, making them suitable for heavy-duty applications. They can efficiently transfer torque between shafts without backlash.

3. Maintenance Requirements: Spacer couplings are relatively simple in design and do not require frequent maintenance. They do not have moving parts or wearing elements, reducing the need for regular inspection and replacement.

4. Torsional Stiffness: Spacer couplings offer high torsional stiffness, ensuring precise and reliable torque transmission between the connected equipment.

5. Installation and Alignment: Installing a spacer coupling requires careful alignment between shafts. While it may be more involved compared to some flexible couplings, proper alignment is essential for optimal performance.

6. Cost: Spacer couplings are generally more cost-effective than some high-performance flexible couplings, making them an attractive choice for various industrial applications.

7. Application Suitability: Spacer couplings are commonly used in applications where rigid and reliable torque transmission is required, such as pumps, compressors, and other heavy machinery.

8. Operating Conditions: Spacer couplings can handle high temperatures, making them suitable for applications in challenging environments.

When selecting a coupling for a specific application, it is essential to consider the specific needs of the system, including the required misalignment compensation, torque transmission capacity, maintenance requirements, and operating conditions. Each coupling type has its strengths and limitations, and the choice will depend on the unique demands of the application.

spacer coupling

Factors to Consider When Choosing a Spacer Coupling for a Specific System

Choosing the right spacer coupling for a specific system requires careful consideration of various factors to ensure optimal performance and reliability. Here are the key factors to keep in mind:

1. Operating Conditions: Understand the operating conditions of the system where the spacer coupling will be used. Consider factors such as torque requirements, rotational speed, temperature range, and environmental conditions (e.g., corrosive, humid, or dusty environments).

2. Misalignment Compensation: Determine the type and magnitude of misalignment that the coupling needs to accommodate. Spacer couplings can handle angular, parallel, and axial misalignments to varying degrees, so selecting the appropriate coupling design is critical.

3. Shaft Sizes and Types: Ensure that the spacer coupling’s bore size matches the shaft diameters of the connected equipment. Additionally, consider whether the shafts are keyed, splined, or have other special features that may require customization of the coupling.

4. Coupling Material: The choice of material for the spacer coupling depends on the application’s requirements. Common materials include steel, stainless steel, aluminum, and various alloys. Consider factors such as strength, corrosion resistance, and temperature limits when selecting the material.

5. Torque and Speed Ratings: Determine the required torque and rotational speed ratings for the coupling based on the power transmission needs of the system. Select a coupling that can handle the specified torque and speed without exceeding its limits.

6. Spacer Length: The length of the spacer in the coupling affects the distance between connected equipment. Ensure that the chosen spacer length allows for proper clearance and alignment between the components.

7. Installation and Maintenance: Consider the ease of installation and maintenance requirements of the spacer coupling. Some couplings may require more frequent maintenance than others, which can impact overall system downtime.

8. Cost and Budget: Evaluate the cost of the spacer coupling and ensure that it fits within the project budget. While cost is a consideration, it is essential not to compromise on quality and performance for the sake of cost savings.

9. Industry Standards and Regulations: Ensure that the chosen spacer coupling complies with relevant industry standards and safety regulations. Adherence to these standards helps guarantee the coupling’s quality and suitability for the intended application.

10. Supplier and Support: Choose a reputable supplier with a track record of providing high-quality spacer couplings. A reliable supplier can offer technical support, assistance with selection, and post-purchase services if required.

By carefully considering these factors and evaluating the specific needs of the system, engineers and designers can select the most appropriate spacer coupling to ensure efficient power transmission, reduce wear on connected equipment, and enhance overall system performance and reliability.

China best Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane  China best Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane
editor by CX 2024-05-09

China Good quality Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane

Product Description

Torsionally rigid high torque CHINAMFG customized single elastic spacer stainless steel flexible drum disc shaft gear coupling for crane

 

Metal flex couplings are disc type couplings in which several flexible metallic elements are alternately attached with bolts to opposite flanges. As polymeric elastomer is replaced by metal disc, Metal Flex coupling provides excellent temperature capability without sacrificing angular and axial misalignment. The coupling provides low axial and bending stiffness while possessing high torsional rigidity. The stretched shim pack design of CHINAMFG Metal Flex couplings provides zero backlash. CHINAMFG Metal Flex couplings are available up to 13367 Nm torque with single shim pack (UMK) and double shim pack (UMS) series.

FEATURES

1.Power to weight ratio high

2.Accommodates angular and axial misalignments

3.High temperature application

4.Visual inspection is possible without dismantling equipments

5.Low axial stiffness with high torsional rigidity

6.High-speed capacity

7.Range up to 12000 Nm

8.Added advantage of stretch fitted shim pack

Material Available

Stainless Steel:SS201,SS301, SS303, SS304, SS316, SS416 etc.
35CrMo 40CrMo42 CrMo
Steel:mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#
Aluminum:AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.
Iron:A36, 45#, 1213, 12L14, 1215 etc.
Plastic:ABS, PC, PE, POM, Delrin, Nylon, , PP,PEI, Peek
or as customer required .

CNC Turning

φ0.5 – φ300 * 750 mm,+/-0.005 mm

CNC Milling

510 * 1571 * 500 mm(max),+/-0.001 mm-+/-0.005 mm

Surface Finish

Aluminum:Clear Anodized,Color Anodized,Sandblast Anodized,Chemical Film,Brushing,Polishing,Chroming.
Stainless Steel:Polishing,Passivating,Sandblasting,Laser engraving.
Steel:Zinc plating,Oxide black,Nickel plating,Chrome plating,Carburized,
Heat treatment,Powder Coated.
Plastic:Painting,Chrome plating,polishing,Sandblast,Laser engraving.

Drawing Format

IGS,STP,X_T ,DXF,DWG , Pro/E, PDF

Test Equipment

Measurement instrument, Projector, CMM, Altimeter, Micrometer, Thread Gages, Calipers, Pin Gauge etc.

 

 

Production workshop:
 

Manufacturer of Couplings, Fluid Coupling, JAW Coupling, can interchange and replacement of lovejoy coupling and so on.

A coupling can interchange and replacement of lovejoy coupling is a device used to connect 2 shafts together at their ends for the purpose of transmitting power. The primary purpose of couplings is to join 2 pieces of rotating equipment while permitting some degree of misalignment or end movement or both. In a more general context, a coupling can also be a mechanical device that serves to connect the ends of adjacent parts or objects. Couplings do not normally allow disconnection of shafts during operation, however there are torque limiting couplings which can slip or disconnect when some torque limit is exceeded. Selection, installation and maintenance of couplings can lead to reduced maintenance time and maintenance cost.

Company information:

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China Good quality Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane
China Good quality Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane

spacer coupling

Can Spacer Couplings Handle Misalignment Between Shafts?

Spacer couplings are designed to handle some degree of misalignment between shafts, but their capacity to do so depends on the specific coupling design and the magnitude of the misalignment.

Unlike flexible couplings, which can accommodate significant misalignment through their elastic properties, spacer couplings are generally less forgiving when it comes to misalignment. However, they can tolerate limited angular, parallel, and axial misalignment.

The amount of allowable misalignment for a spacer coupling depends on factors such as:

  • Coupling Design: Some spacer couplings, such as the sleeve or muff coupling, have relatively more flexibility and can handle more misalignment than others.
  • Coupling Size: Larger spacer couplings may have a higher misalignment capacity than smaller ones.
  • Material: Certain materials used in manufacturing spacer couplings may provide some level of flexibility to accommodate misalignment.
  • Application Requirements: The specific needs of the application, including the type of connected equipment and the expected operating conditions, will influence the acceptable misalignment range.

It is essential to consider the manufacturer’s specifications and recommendations when using spacer couplings to ensure that the misalignment falls within the permissible limits. Excessive misalignment can lead to premature wear, increased vibration, and reduced coupling life. Therefore, precise alignment during installation is critical for optimal performance and longevity of the spacer coupling and the connected machinery.

spacer coupling

Use of Spacer Couplings for Motor-to-Shaft and Shaft-to-Shaft Connections

Yes, spacer couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various mechanical systems and power transmission applications. The versatility of spacer couplings allows them to accommodate different types of connections between rotating machinery and shafts.

1. Motor-to-Shaft Connections:

In motor-to-shaft connections, a motor is connected to a driven shaft or component. Spacer couplings can be utilized to bridge the gap between the motor and the driven shaft while maintaining the required alignment. These couplings help transmit torque from the motor to the driven shaft efficiently, ensuring smooth power transmission. They also compensate for any misalignment between the motor and the driven shaft, reducing the risk of mechanical stress and vibration-related issues.

2. Shaft-to-Shaft Connections:

For shaft-to-shaft connections, where two shafts need to be connected together, spacer couplings provide a flexible and reliable solution. Spacer couplings can handle angular, parallel, and axial misalignment between the shafts, allowing them to operate smoothly even when there are slight deviations in alignment. This capability helps prevent excessive wear and premature failure of equipment components.

Whether in motor-to-shaft or shaft-to-shaft connections, spacer couplings play a vital role in enhancing the reliability and efficiency of power transmission systems. They help protect connected equipment from shock loads, vibrations, and misalignment, ultimately contributing to extended service life and reduced maintenance requirements.

It is essential to select the appropriate type and size of spacer coupling based on the specific application requirements, including torque capacity, operating speed, shaft size, and environmental conditions. Proper installation and alignment of the spacer coupling are crucial to ensure optimal performance and reliability of the connected equipment.

China Good quality Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane  China Good quality Torsionally Rigid High Torque CHINAMFG Customized Single Elastic Spacer Stainless Steel Flexible Drum Disc Shaft Gear Coupling for Crane
editor by CX 2024-04-25

China Professional Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling

Product Description

Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling

 

Metal flex couplings are disc type couplings in which several flexible metallic elements are alternately attached with bolts to opposite flanges. As polymeric elastomer is replaced by metal disc, Metal Flex coupling provides excellent temperature capability without sacrificing angular and axial misalignment. The coupling provides low axial and bending stiffness while possessing high torsional rigidity. The stretched shim pack design of CHINAMFG Metal Flex couplings provides zero backlash. CHINAMFG Metal Flex couplings are available up to 13367 Nm torque with single shim pack (UMK) and double shim pack (UMS) series.

FEATURES

1.Power to weight ratio high

2.Accommodates angular and axial misalignments

3.High temperature application

4.Visual inspection is possible without dismantling equipments

5.Low axial stiffness with high torsional rigidity

6.High-speed capacity

7.Range up to 12000 Nm

8.Added advantage of stretch fitted shim pack

 

Material Available

Stainless Steel:SS201,SS301, SS303, SS304, SS316, SS416 etc.
35CrMo 40CrMo42 CrMo
Steel:mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45#
Aluminum:AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.
Iron:A36, 45#, 1213, 12L14, 1215 etc.
Plastic:ABS, PC, PE, POM, Delrin, Nylon, , PP,PEI, Peek
or as customer required .

CNC Turning

φ0.5 – φ300 * 750 mm,+/-0.005 mm

CNC Milling

510 * 1571 * 500 mm(max),+/-0.001 mm-+/-0.005 mm

Surface Finish

Aluminum:Clear Anodized,Color Anodized,Sandblast Anodized,Chemical Film,Brushing,Polishing,Chroming.
Stainless Steel:Polishing,Passivating,Sandblasting,Laser engraving.
Steel:Zinc plating,Oxide black,Nickel plating,Chrome plating,Carburized,
Heat treatment,Powder Coated.
Plastic:Painting,Chrome plating,polishing,Sandblast,Laser engraving.

Drawing Format

IGS,STP,X_T ,DXF,DWG , Pro/E, PDF

Test Equipment

Measurement instrument, Projector, CMM, Altimeter, Micrometer, Thread Gages, Calipers, Pin Gauge etc.

 

Related products:

Production workshop:

Company information:

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: 19-32
Torque: >80N.M
Bore Diameter: 19mm
Speed: 4000r/M
Structure: Flexible
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China Professional Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling
China Professional Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling

spacer coupling

Can Spacer Couplings Handle Misalignment Between Shafts?

Spacer couplings are designed to handle some degree of misalignment between shafts, but their capacity to do so depends on the specific coupling design and the magnitude of the misalignment.

Unlike flexible couplings, which can accommodate significant misalignment through their elastic properties, spacer couplings are generally less forgiving when it comes to misalignment. However, they can tolerate limited angular, parallel, and axial misalignment.

The amount of allowable misalignment for a spacer coupling depends on factors such as:

  • Coupling Design: Some spacer couplings, such as the sleeve or muff coupling, have relatively more flexibility and can handle more misalignment than others.
  • Coupling Size: Larger spacer couplings may have a higher misalignment capacity than smaller ones.
  • Material: Certain materials used in manufacturing spacer couplings may provide some level of flexibility to accommodate misalignment.
  • Application Requirements: The specific needs of the application, including the type of connected equipment and the expected operating conditions, will influence the acceptable misalignment range.

It is essential to consider the manufacturer’s specifications and recommendations when using spacer couplings to ensure that the misalignment falls within the permissible limits. Excessive misalignment can lead to premature wear, increased vibration, and reduced coupling life. Therefore, precise alignment during installation is critical for optimal performance and longevity of the spacer coupling and the connected machinery.

spacer coupling

How Does a Spacer Coupling Handle Angular, Parallel, and Axial Misalignment?

A spacer coupling is a type of flexible coupling that is designed to accommodate different types of misalignment between shafts. Here’s how it handles angular, parallel, and axial misalignment:

1. Angular Misalignment: Angular misalignment occurs when the axes of the two shafts are not parallel but intersect at a certain angle. A spacer coupling can handle angular misalignment by allowing the flexible element (such as an elastomeric or metallic component) to flex and bend when the shafts are not perfectly aligned. This bending action allows the coupling to compensate for the angular displacement between the shafts and transmit torque smoothly.

2. Parallel Misalignment: Parallel misalignment occurs when the axes of the two shafts are parallel but are offset laterally. A spacer coupling can handle parallel misalignment by virtue of its design. The spacer element (a cylindrical piece that connects the two coupling halves) provides the required lateral space between the shafts. This space allows the shafts to have a slight offset without inducing excessive stress on the machinery, thereby minimizing the risk of premature wear or failure.

3. Axial Misalignment: Axial misalignment occurs when the two shafts move closer together or farther apart along their axis. Some spacer couplings may have limited axial movement capabilities, which can help accommodate slight axial misalignment. However, it’s essential to ensure that the axial displacement is within the coupling’s specified limits to avoid overloading the coupling or the connected equipment.

Overall, spacer couplings are designed to be flexible and provide some degree of misalignment accommodation, but their ability to handle misalignment depends on their specific design and material properties. It’s essential to select the appropriate type and size of spacer coupling based on the expected misalignment and operational requirements of the machinery to ensure optimal performance and longevity of the coupling and the connected components.

China Professional Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling  China Professional Djm Flexible Stainless Steel Disc Coupling Shaft Torsionally Rigid Plate Elastic Single Double Spacer Diaphragm Coupling
editor by CX 2024-04-23